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In-silico Study: The role of myricitrin from the leaves of Syzygium cumini in
breast cancer treatment through apoptosis pathway
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Abstract:

Myricitrin, a naturally occurring flavonoid glycoside, exhibits a wide spectrum of pharmacological activities, including anti-bacterial, anti-viral, anti-
allergic, antioxidant, anti-diabetic, anti-allodynic, anti-inflammatory, and anti-cancer effects. This study investigates the anticancer potential of myricitrin,
isolated from the leaves of Syzygium cumini, against breast cancer-associated molecular targets using an in-silico approach. The primary objectives were to
evaluate the compound's compliance with Lipinski's Rule of Five, assess its ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity)
profile, and analyze protein-ligand interactions relevant to breast cancer progression and apoptosis regulation. Physicochemical evaluation revealed that
myricitrin satisfies Lipinski's Rule of Five, indicating favorable drug-likeness properties for oral bioavailability. ADMET predictions further demonstrated
favorable pharmacokinetic and safety profiles. Molecular docking studies revealed that myricitrin exhibited strong binding affinities toward key apoptotic
and cell-cycle regulatory proteins, including Caspase 8, NF-kB/p65, CDK4, CDK®, Bcl-2, and Bak. Notably, hydrogen bond interactions and hydrophobic
contacts contributed significantly to the stability of these complexes. The interactions with both pro-apoptotic (Caspase 8, Bak) and anti-apoptotic (Bcl-2)
proteins suggest a potential dual modulatory mechanism in apoptosis regulation, making myricitrin a promising candidate for targeted breast cancer
therapy. The findings provide compelling in-silico evidence for the anticancer potential of myricitrin, supporting its role as a therapeutic lead compound.
Further in vitro and in vivo studies are warranted to validate these interactions and establish its clinical applicability. This study highlights myricitrin as a

powerful herbal bioactive candidate with potential for the development of novel breast cancer therapeutics.

1. Introduction

In the global level, one of the leading factors of death is cancer. The count

of recent instances of cancer has increased to 19.3 million, and according
to the Global Cancer Statistics 2020, there’s been 10 million cancer-related
mortalities. It is envisaged that there will be 28.4 million new cases of
cancer globally by the year 2040, a startling 47% upsurge from the existing
level (Sung et al. 2021). The most effective cancer therapies inhibit tumour
growth and prevent metastasis. Breast cancer is a diverse disease that is
most common in women and men as well. It ranks as the second most
common reason of cancer associated fatalities worldwide (Lukasiewicz et
al. 2021). Females over 50, early menarche, nulliparity, advanced age at
menopause, fewer children and less exposure to breastfeeding, obesity,
and increasing alcohol intake are risk factors for breast cancer. Hormone
therapy, targeted therapy, radiation therapy, operation, and chemotherapy
are among the treatments used to manage and treat breast cancer
(Collaborative Group on Hormonal Factors in Breast 2012). Scientists are
currently searching for alternative methods of treating breast cancer as
there are adverse effects of current medicines. Due to the chemo
preventive and chemotherapeutic properties, plant-based substances, also
referred to as phytochemicals, are being used to develop new anticancer
drugs (Choudhari et al. 2019; Mazurakova et al. 2022; Wei et al. 2023). In
cancer patients, phytochemicals and their derivatives can improve therapy
effectiveness and minimize side effects. Several of these phytoconstituents
are naturally occurring bioactive compounds with potent anticancer
properties (Asma et al. 2022; Sofi and Tabassum 2023). Phytochemicals
often exert their effects by modulating molecular signaling pathways
associated with cancer progression (Ahmed et al. 2022; Situmorang et al.
2024). The specific mechanisms include enhancement of antioxidant
defences, inactivation of carcinogens, inhibition of cell proliferation,
inducing cell cycle block and apoptosis, and immune response’s
modulation. Myricitrin, a 3-O-rhamnoside of myricetin, is a flavonoid
(family Myricaceae). It is found in the leaves, pulp and skin of Syzygium
cumini. It is normally located in tea, fruits, berries and medicinal plants
(Agraharam, Girigoswami, and Girigoswami 2022). Myricitrin displays a

wide range of pharmacological activities, with antibacterial, antiviral,
anti-allergic, antioxidant, antidiabetic, anti-allodynic, anti-inflammatory,
and anticancer properties. Myricitrin has been stated to possess anti-
cancer activities against prostate cancer PC-3 cells, ovarian cancer cells,
breast cancer (MCF-7), endometrial cancer (Ishikawa) cells, HL 60
leukaemia cells, Colorectal cancer and multiple myeloma cells (Semwal et
al. 2016). The current article aimed to examine the anticancer potential of
myricitrin withdrawn from the Syzygium cumini leaves by targeting cell
cycle regulators, apoptotic markers, reactive oxygen species (ROS), and
NF-xB signaling proteins through molecular
(Abdulrahman and Hama 2023). The novelty of the present study is

docking analyses

attributed to the strategic selection of both the phytochemical compound
and apoptosis-associated molecular targets, which, to the best of our
belief, have not been explored in combination in prior studies (Wani et al.
2023). Specifically, this work represents the first in silico evaluation of
myricitrin isolated from the leaves of Syzygium cumini for its potential
interaction with key pro-apoptotic and anti-apoptotic proteins implicated
in breast cancer (Almatroodi and Rahmani 2025). By investigating the
previously unexplored intersection between the bioactive compound
myricitrin, derived from the leaves of Syzygium cumini, and the regulation
of apoptosis in breast cancer, this study addresses a critical knowledge gap
and establishes a novel foundation for future experimental and
translational research in natural compound-based cancer therapeutics
(Barh and Viswanathan 2008; Kumar et al. 2023).
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2. Materials and Methods

2.1. Ligand preparation

PubChem is a publicly accessible chemical information database
maintained by the National Institutes of Health (NIH), United States.
PubChem aggregates biological activity descriptions for a chemical from
hundreds of bases and made accessible for all. The canonical SMILES of
myricitrin were taken from PubChem. ChemSketch was employed to
illustrate the 2D structure of the ligand myricitrin (Wang et al. 2009).

2.2. Drug-likeliness properties

The pharmacokinetic profiling of myricitrin was conducted utilizing the
pkCSM tool, a computational platform designed for the prediction of
drug-likeness and ADMET properties (Absorption, Distribution,
Metabolism, Excretion, and Toxicity) (Pires, Blundell, and Ascher 2015;
Bitew et al. 2021). The tool employs graph-based structural signatures to
model and predict essential pharmacokinetic parameters, including
compliance with Lipinski’s Rule of 5, solubility, permeability, and potential
toxicity. Through pkCSM analysis, molecular descriptors such as
lipophilicity, molecular weight, hydrogen bonding capacity, and rotatable
bonds were evaluated, alongside predictive models for absorption rates,
distribution characteristics, metabolic stability, route of excretion, and
toxicity risks (Wu et al. 2020; Ahmad et al. 2023). This integrated in-silico
approach enables rapid and reliable assessment of a compound’s suitability
as a drug candidate, supporting lead optimization in drug development
(Agamah et al. 2020; Du et al. 2023; Kanan et al. 2021).

2.3. Protein Preparation

The 3D structure of Cell cycle proteins, Cyclin-D1 (PDB ID:2W99-A),
Cyclin-D3 (PDB ID:3G33-B), Cyclin-Dependent Kinase 4 (CDK4) (PDB
ID:3G33-A), Cyclin-Dependent Kinase 6 (CDK6) (PDB ID:1G3N-A),
Cyclin Dependent kinase inhibitor 4c (p18 INK4c) (PDB ID:1G3N-B),
Cyclin Dependent kinase inhibitor 1 (p21WAF1 /CIP1) (PDB ID:1AXC-
B), Cyclin-dependent kinase inhibitor 1B (p27 KIP1) (PDB ID:1JSU-C),
Apoptotic proteins, B-cell lymphoma-extra-large (Bcl-xL) (PDB ID:1G5]J-
A), B-cell leukemia/lymphoma 2 protein (BCL-2) (PDB ID: 1G5M-A),
Caspase 3 - apoptosis-executing protease) (PDB ID:1GFW-A), Caspase 9
- apoptosis-initiating protease (PDB ID:INW?9-B), Caspase 6 - apoptosis-
executing protease (PDB ID: 2WDP-A), Caspase 8 - apoptosis-initiating
protease (PDB ID: 5JQE-A), BCL-2-associated X protein (Bax) (PDB ID:
2K7W-B), BCL-2 antagonist/killer (Bak) (PDB ID: 2YV6-A), ROS
(Reactive Oxygen Species) proteins, Catalase (CAT) (PDB ID: 1QQW-A),
Superoxide dismutase (SOD) (PDB ID: 1SPD-A),  Glutathione
peroxidase-2 (GPx-2) (PDB ID: 2HE3-A), Peroxiredoxin (PDB ID:
10C3-A), NF-«xB Subunit proteins, Nuclear factor NF-kappa-B p52
subunit (NF-xB/p52) (PDB ID: 1A3Q-A), Nuclear factor NF-kappa-B p65
subunit (NF-xB/p65) (PDB ID: INFI-A) and Nuclear factor NF-kappa-B
p100 subunit (NF-kB/p100) (PDB ID: 3DO7-B) were found from Protein
Data Bank (PDB) (Velankar et al. 2021). The receptors were equipped by
eliminating water molecules, nucleic acid groups, native ligand groups
and heteroatoms, accompanied by the accumulation of polar hydrogen
atoms to optimise receptor-ligand interactions using BIOVIA Discovery
Studio Visualizer 2021 Client software (Igbal et al. 2023).

2.4. Grid box generation

Grid box generation is a critical stage in molecular dockage, as it states the
spatial boundaries within which the ligand explores potential binding
conformations with the target protein. The grid sizes were fixed to 25 x
25 x 25 A, and the center coordinates were manually defined based on the
position of key active site residues (Forli et al. 2016; Yang, Chen, and
Zhang 2022). These coordinates were identified using either the co-
crystallized ligand present in the protein layout or through predicted
binding pocket analysis (Gao and Skolnick 2012). This ensured that the
grid adequately covered the most relevant region of the protein for ligand

interaction. The selection of grid parameters was done to optimize the
accuracy of docking outcomes while maintaining computational
efficiency (Agu et al. 2023; Forli et al. 2016).

2.5. Molecular Docking

Molecular docking was executed using PyRx version 0.8, which
incorporates AutoDock Vina as its default docking engine. Ligand
molecules were energy minimized using the Open Babel module
integrated within PyRx to optimize their geometries prior to docking
(Agyapong et al. 2021; Eberhardt et al. 2021). The docking protocol
employed the default parameters of AutoDock Vina, with the
exhaustiveness value set to 8 to achieve a balance between computational
efficiency and conformational sampling accuracy. Docking results were
examined based on holding affinity scores, expressed as Vina scores
(kcal/mol), where lower values indicate more favourable interactions
(Ivanova and Karelson 2022; Trott and Olson 2010). To authenticate the
dependability of the docking protocol, re-docking of native co-
crystallized ligand was performed. The predicted binding pose was then
compared to the experimentally observed position using Root Mean
Square Deviation (RMSD) analysis. An RMSD value of < 2.0 A was
considered indicative of reliable and reproducible docking performance
(Ramirez and Caballero 2018; Mukherjee, Balius, and Rizzo 2010).

2.5. Protein-Ligand visualization

The docking poses were further analyzed to identify the main molecular
relations, with hydrogen bonds, hydrophobic associates, and n—n stacking,
by means of the BIOVIA Discovery Studio Visualizer 2021 Client software
(Igbal et al. 2023). By bringing its result into the BIOVIA Discovery Studio
Visualizer 2021 Client program, that showed 3D and 2D connections of
the docking output through the bond length, we accomplished to find an
important interface between the ligands and the receptor binding site
(Bhat et al. 2022).
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Figure 1. Myricitrin-Induced Apoptosis via Dual Activation of
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3. Results and Discussion

3.1. Dual Activation of Extrinsic and Intrinsic Pathway

The figure 1 depicts the dual apoptotic pathways activated by myricitrin
in cancer cells. In the extrinsic pathway, myricitrin upregulates Fas ligand
(FasL) expression on the cell membrane, leading to Fas receptor activation
and subsequent initiation of caspase-8. Activated caspase-8 directly
cleaves and activates caspase-3, which then mediates poly (ADP-ribose)
polymerase (PARP) cleavage, a hallmark of apoptosis (Jan and Chaudhry
2019). Additionally, myricitrin downregulates X-linked inhibitor of
apoptosis protein-1 (XIAP-1), alleviating its inhibitory effect on caspase-3
and thereby amplifying intrinsic

apoptotic  signaling. In the

(mitochondrial) pathway, myricitrin promotes the activation of

pro-apoptotic proteins Bax and Bad while suppressing anti-apoptotic
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proteins Bcl-2, Bcl-xL, and Mcl-1. This shift in the Bcl-2 family protein
balance triggers mitochondrial outer membrane permeabilization,
facilitating the release of cytochrome c into the cytosol (Chaudhary et al.
2016). Cytochromec binds to apoptotic protease-activating factor-1
(Apaf-1) to form the apoptosome, which recruits and activates
procaspase-9 into caspase-9. Caspase-9 subsequently activates caspase-3,
further enhancing PARP cleavage and executing apoptosis. These
pathways converge at caspase-3 activation, demonstrating that myricitrin
induces apoptosis through coordinated modulation of both death
receptor and mitochondrial signaling cascades, highlighting its potential
as a therapeutic agent in cancer treatment (Han et al. 2022).

3.2. Structure and chemistry of Myricitrin

Myricitrin is a flavonoid glycoside compound with the molecular formula
C21H300:2 and a molecular weight of 464.38 g/mol. Structurally, it is the
3-O-a-L-rhamnopyranoside of myricetin, meaning myricitrin consists of
the flavonol aglycone myricetin linked to an a-L-rhamnose sugar moiety
at the C-3 position as shown in the figure 2. The compound exhibits the
characteristic flavonoid backbone featuring three ring systems: two
aromatic rings (A and B) connected by a heterocyclic pyran ring (C)
(Hwang and Chung 2018). The aglycone portion (myricetin) contains six
hydroxyl groups positioned at C-3, C-5, C-7 (on rings A and C), and C-3/,
C-4', C-5' (on ring B), making it a hexahydroxyflavone. The rhamnose
sugar unit is attached via a glycosidic bond at the 3-position, contributing
three additional hydroxyl groups. This extensive hydroxylation pattern is
responsible for myricitrin's potent antioxidant properties and biological
activities. Myricitrin appears as a light yellow to yellow-orange crystalline
powder with a melting point of 197°C. The compound is soluble in polar
solvents like DMSO (up to 93 mg/mL) and methanol, with specific optical
rotation of -152° to -160° (c=0.5, MeOH). Its IUPAC name is 5,7-
dihydroxy-3-[(2S,3R,4R,5R,65)-3,4,5-trihydroxy-6-methyloxan-2-
ylJoxy-2-(3,4,5-trihydroxyphenyl)chromen-4-one (Behl et al. 2021).

OH

Figure 2. Chemical structure of myricitrin, known for its antioxidant,

anti-inﬂammatory, and anticancer properties, and it exerts cytotoxic
effects in cancer cells through modulation of both extrinsic and
intrinsic apoptotic pathways.

3.3. Lipinski's rule of five

Myricitrin was assessed for its drug-likeness using Lipinski’s Rule of Five
and its pharmacokinetic properties through ADMET analysis. A
molecular weight of 464.379 Da and a logP value of 0.1943 indicate
favorable drug-likeness, characterized by good aqueous solubility and low
lipophilicity. The compound contains three rotatable bonds, indicating
adequate molecular flexibility. However, the presence of 12 hydrogen
bond acceptors, 8 hydrogen bond donors, and a high polar surface area
(183.901 A?), may limit its passive absorption across biological
membranes (Table 1).

Table 1: Myricitrin-LIPINSKI rule of 5

Mol. Weight 464.379
LogP 0.1943
Rotatable bonds 3
Acceptors 12
Donors 8
Surface area 183.901

Table 2: ADMET properties of Myricitrin.

Ligand Myricitrin
Human Oral absorbtion 43.334
BBB permeability -1.811
CYP2D6 substrate No
CYP2D6 inhibitor No

Total clearance 0.303

AMES toxicity No

Oral Rat Acute Toxicity 2.537
Oral Rat Chronic Toxicity 3.386
Hepatotoxicity No

3.4. ADME/T Properties

ADMET predictions indicated moderate intestinal absorption (43.334%)
and poor blood-brain barrier permeability (log BB: -1.811), which is
favorable for non-CNS-targeted therapies. Importantly, Myricitrin does
not act as a substrate or inhibitor of the CYP2D6 enzyme, signifying low
risk for metabolic drug-drug interactions. Its total clearance rate (0.303
log ml/min/kg) reflects moderate elimination potential. Toxicological
predictions indicate that myricitrin is non-mutagenic (negative AMES
test), non-hepatotoxic, and exhibits low acute toxicity (LDso: 2.537
mol/kg), along with a high threshold for chronic toxicity (LOAEL: 3.386
log mg/kg-bw/day). Overall, these findings shows that Myricitrin exhibits
a favorable pharmacokinetic and safety profile, supporting its potential as
a lead compound in the development of therapeutics for breast cancer
(Table 2).

3.5. Molecular Docking

As a first selection process in drug discovery, molecular docking is an
essential in silico method that predicts the interface and binding affinity
among a ligand and its target protein. Binding affinity, commonly
expressed in kcal/mol using docking software such as Auto Dock Vina,
represents the power of the ligand-target interaction; more negative
values indicate a sturdier and more favorable binding interaction. A
binding affinity between < and 6.0 kcal/mol is generally regarded as
moderate, but affinities between < and 8.0 kcal/mol indicate significant
binding and possible biological activity. Docking analyses were performed
against proteins associated with the cell cycle, apoptosis, reactive oxygen
species (ROS), and NF-kB signaling pathways. Myricitrin interacted with
22 targets (Cyclin D1, Cyclin D3, CDK4, CDK6, P18 INK4c, P21 CIPI,
P27 KIP1, Bcl-xL, Bcl-2, Caspase 3, Caspase 9, Bax, Caspase 6, Bak,
Caspase 8, Superoxide dismutase, Catalase, Glutathione peroxidase-2,
Peroxiredoxin, NF-«kB/p52, NF-kB/p65, NF-kB/pl00) among them
myricitrin showed higher binding affinities towards Catalase, CDK4, and
NF-kB/p65 (-8.6, -8.3, and -7.8). Myricitrin showed seven hydrogen bond
interactions with the following proteins NF-kB/p65 (GLN A:142(2.64 A),
ASN A:139(2.47 A), ASN A:137(2.254, 2.68A), ARG A:73(1.814, 2.804),
VAL A:163(2.69 A), ARG A:174(2.39 A), LEU A:175(2.254, 2.49A) and
Caspase 8 (ASP A:26(2.63A), TRP A:242 (2.65A), GLU A:123 (1.88A),
GLY A:312 (2.83A), ASP A:248 (2.12A4), ARG A:328 (2.39A), SER A:245
(2.56A). It showed five hydrogen bond interactions with CDK4 (LEU
A:166 (2.59A), GLN A:173(2.90 A), ALA A:21(2.22 A,2.25 A,5.36 A), TYR
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Figure 3. Molecular interaction between Myricitrin and cell cycle proteins such as Cyclin D1, Cyclin D3, CDK4, CDKS6, p18 INK4c, p21 CIP1
and p27 KIP1.
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Figure 4. Molecular interactions between Myricitrin and apoptotic proteins such as Bcl-xL, BCL-2, Caspase 3, Caspase 6, Caspase 8, Caspase 9
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Figure 5. Molecular interaction between Myricitrin and ROS proteins such as Peroxiredoxin, Catalase, Superoxide dismutase and Glutathione

peroxidase-2.
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Figure 6. Molecular interaction between Myricitrin and NF-kB proteins such as NF-«kB/p52, NF-kB/p65 and NF-«kB/p100.

Table 3. Binding affinity and H-bond interactions of myricitrin.

Target types Targets Binding affinity H bond - Myricitrin
(kcal/mol) interaction with bond length

Cell cycle
proteins

Apoptotic
proteins

ROS
proteins

NF-«B Subunit
proteins

Cyclin D1
Cyclin D3

CDK4

CDKe6

P18 INK4c

P21 CIP1

P27 KIP1
Bcl-xL

Bcl-2
Caspase 3

Caspase 9
Bax

Caspase 6

Bak

Caspase 8

Superoxide

dismutase
Catalase

Glutathione
peroxidase-2

Peroxiredoxin
NF-kB/p52

NF-kB/p65
NE-kB/p100

-7.6
-7.7

-8.3

-7.8

-7.3

-5.6

-6.2
-7.6

-7.6
-6.3

-7.3
-5.6
-6.6

-7.7

-7.7

-6.8
-8.6

-6.7
-7.0
-7.7

-7.8
-7.6

GLN A:183(2.46 A), THR A:184(2.02 A, 3.82 A), CYC A:68(2.98 A), GLU
A:75 (2.044)

LEU B:148 (2.93A), ARG B:87 (2.41A4), ARG B:41 (2.21 A,4.31 A,4.44A)
LEU A:166 (2.59A), GLN A:173(2.90 A), ALA A:21(2.22 A,2.25 A,5.36 A)
TYR A:170(2.044A, 2.55A), ARG A:186(1.964, 2.534)

ILE A:235 (2.29 A), GLY A:236(2.19 A), THR A:282 (2.10 A), ASP A:275
(2.25A), GLN A:260 (2.54 A)

THR B:69 (2.65 A), ASP B:67 (2.18 A, 2.68 A), ASP B:76 (2.89 A, 3.51 A),
LEU B:47 (2.16 A, 5.24 A)

ARG B:156(2.24 A,2.26 A, 2.49 A, 421 A, 4.50 A, 4.73 A), SER B:153(2.40
A), ARG B:155(2.53 A, 4.09 A)

GLN C:77(2.03 A, 2.39 A), GLU C:75 (2.41 A, 2.86 A)

SER A:47(1.594A, 2.224), GLU A:46 (2.18A)

THR A:47(2.89A), SER A:49(2.27A), GLUA:48(2.03A), GLYA:8(2.164,
2.17A), ALA A:43(2.30A)

ARG A:79 (2.49A, 2.61A, 5.224), VAL A:85(2.81A)
ASN B:265 (2.33A), GLY B:277 (2.23A), ASP B:340 (2.33A), SER B:339
(2.294)
ASN B:160 (2.114)
ARG A:42(2.04A,2.54A), SER A:79 (2.394)
GLU A:48 (2.39A), ARG A:42 (2.41A ,4.44A), ASN A:86 (2.01A), ASP A:83
(2.21A), GLN A:94 (1.97A)

ASP A:26(2.634), TRP A:242 (2.65A), GLU A:123 (1.884), GLY A:312
(2.834), ASP A:248 (2.12A) A, RG A:328 (2.39A), SER A:245 (2.56A)

ASP A:360 (2.90A), GLY A:277 (2.61A)

GLN A:78(2.92A), GLU A:106 (2.554, 2.89A), ASN A:69 (2.404, 2.86A)
GLY A:92 (2.014, 3.51A), LEU A:96 (2.994), GLU A:16 (1.96A, 4.02A)
LYS A:90 (2.41 A), LYS A:153 (2.23 A)

GLN A:142(2.64 A), ASN A:139(2.47 A), ASN A:137(2.254, 2.68A), ARG

A:73(1.814, 2.804), VAL A:163(2.69 A), ARG A:174(2.39 A), LEU
A:175(2.25A, 2.494)

LYS B:153(2.24 A, 5.04 A), LEU B:95(2.514 ,2.51 A)
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A:170(2.044, 2.554), ARG A:186(1.964, 2.53A), CDK6 (ILE A:235 (2.29
A), GLY A:236(2.19 A), THR A:282 (2.10 A), ASP A:275 (2.25A), GLN
A260 (254 A), Bcl-2 (THR A:47(2.89A), SER A:49(2.274)
GLUA:48(2.03A), GLYA:8(2.16A, 2.17A), ALA A:43(2.30A) and
BAK(GLU A:48 (2.39A), ARG A:42 (2.41A ,4.44A), ASN A:86 (2.014),
ASP A:83 (2.21A), GLN A:94 (1.97A). Superoxide dismutase does not
have any hydrogen bond interactions (Fig. 3, 4, 5, 6 and Table 3).

A network of molecular targets, including important modulators of the
cell cycle, apoptotic pathways, redox balance, and transcriptional control,
is engrossed in the regulation of cancer cell proliferation and death. The
G1 to S stage transition depends on cyclin D1 and cyclin D3 and their
catalytic partners CDK4 and CDKG6 as well, which phosphorylate the
retinoblastoma (Rb) protein to advance the cell cycle. Overexpression of
these proteins contributes to uncontrolled cell proliferation in various
malignancies (Feitelson et al. 2015). CDK inhibitors such as p18INK4c,
p21CIP1 and p27KIP1 function as tumour suppressors by negatively
regulating CDK activity, inducing cell cycle arrest, and inhibiting cellular
proliferation. Reactive oxygen species (ROS) have two functions in
cancer: they promote carcinogenesis at moderate levels while causing
apoptosis at high levels. Glutathione peroxidase (GPx), peroxiredoxin,
catalase, and superoxide dismutase (SOD) are antioxidant enzymes that
neutralise ROS their
dysregulation can make cells more vulnerable to oxidative damage and
apoptosis (Franklin et al. 1998; Abukhdeir and Park 2008).

Furthermore, the NF-«B signaling pathway, which includes subunits like
NEF-kB/p65 (canonical pathway) and NF-«kB/p52 and NF-kB/p100 (non-
canonical pathway), is a vital regulator of inflammation and cell survival.

to maintain cellular redox homeostasis;

While its suppression makes tumour cells more sensitive to apoptotic
triggers, persistent initiation of NF-kB in cancer cells stimulates the
transcription of genes that prevent apoptosis and increase proliferation.
Collectively, these targets represent crucial nodes in cancer progression
and are frequently exploited in the development of targeted anticancer
therapies (Sun 2011; Deka and Li 2023).

3.6. Other Interactions with Myricitrin

Myricitrin exhibits strong binding affinity with key cell cycle regulatory
proteins through various non-covalent interactions. With Cyclin D1, the
compound forms multiple stabilizing contacts including pi-sigma
interactions with LEU A:65 (3.85-3.87 A), alkyl interactions with LYS
A:180 and ALA A:187, and a pi-anion interaction with GLU A:69 (3.63
A). The CDK4 interaction is characterized by pi-sigma interactions with
VAL A:181 (3.69-4.30 A) and carbon-hydrogen bonds with ALA A:167
and THR A:177, indicating stable binding within the active site. CDK6
demonstrates extensive pi-alkyl interactions with ALA A:259, LEU A:278,
and LYS A:279, suggesting effective inhibition potential. The interaction
with P27 KIP1 is particularly notable, featuring multiple pi-pi stacked
interactions with TRP C:76 and TRP C:60, along with alkyl interactions
with LEU C:84 and VAL C:79. These aromatic stacking interactions
typically provide strong binding stability and are crucial for protein-ligand
complex formation. Myricitrin's interaction profile with apoptotic
proteins reveals its dual modulatory capacity. With anti-apoptotic proteins
Bcl-2 and Bcl-xL, the compound forms pi-anion interactions (ASP A:10,
439 A) and amide-pi-stacked interactions (ALA A:4, 3.82-4.82 A),
respectively, potentially disrupting their anti-apoptotic functions.
Conversely, interactions with pro-apoptotic proteins like Bax involve
multiple alkyl and carbon-hydrogen bonds with GLY B:156, ILE B:155,
LEU B:152, and ARG B:153, suggesting enhancement of pro-apoptotic
signaling. Caspase 8 exhibits pi-pi T-shaped interactions with TRP A:244
(5.50 A) and pi-alkyl interactions with PRO A:310, indicating potential
activation of the extrinsic apoptotic pathway. The interactions with
Caspase 3, Caspase 6, and Caspase 9 primarily involve carbon-hydrogen
bonds and pi-alkyl interactions, suggesting facilitation of the apoptotic

execution phase. The binding profile with reactive oxygen species (ROS)-
related proteins demonstrates myricitrin's antioxidant mechanism.
Superoxide dismutase interactions include pi-sigma interactions with ILE
A:99 (3.73-3.87 A) and extensive pi-alkyl interactions with PRO A:74,
enhancing enzymatic antioxidant activity. Catalase exhibits diverse
interactions including pi-sulfur bonds with MET A:350, pi-pi stacked
interactions with PHE A:161, and multiple pi-alkyl interactions,
indicating strong binding affinity and potential enzyme activation.
Glutathione peroxidase-2 and Peroxiredoxin interactions primarily
involve pi-alkyl and pi-cation interactions, respectively, suggesting
enhancement of cellular antioxidant defense mechanisms.

Myricitrin's  interaction with NF-kB subunits reveals its anti-
inflammatory potential. NF-kB/p52 demonstrates pi-cation interactions
with ARG A:160 (4.42 A), pi-sigma interactions with ILE A:119, and
multiple alkyl interactions, suggesting inhibition of inflammatory
signaling. NF-kB/p65 interactions include pi-cation bonds with GLU
A:101 (4.20 A), indicating potential suppression of inflammatory gene
transcription. NF-kB/pl100 exhibits carbon-hydrogen bonds, pi-anion
interactions with ASP B:94, and pi-alkyl interactions, further supporting
anti-inflammatory activity. The predominant interaction types observed
include pi-alkyl interactions (providing hydrophobic stability), carbon-
hydrogen bonds (contributing to binding specificity), pi-sigma
interactions (enhancing binding strength), and pi-pi stacked interactions
(offering aromatic stabilization). The bond lengths generally range from
2.0-5.8 A, with most interactions falling within optimal binding distances
(3.0-5.0 A), indicating stable and energetically favorable protein-ligand
complexes. These comprehensive binding interactions demonstrate
myricitrin's  multi-target  therapeutic  potential, simultaneously
modulating cell cycle progression, apoptosis, oxidative stress, and
inflammation pathways, supporting its candidacy as a promising

anticancer agent.

Overall, the results from the in-silico studies suggest that the compound
exhibits a higher binding affinity and more favorable hydrogen bond
interactions. Apoptosis, an exceedingly controlled form of programmed
cell death, plays a serious role in upholding tissue growth and
homeostasis. Additionally, it serves as a defensive mechanism to eradicate
cells that are damaged, potentially malignant, or infected by viruses.
Apoptotic signaling occurs via two distinct molecular mechanisms
(Elmore 2007). Both pro-apoptotic and anti-apoptotic members of the
Bcl-2 family regulate the permeabilization of the mitochondrial outer
membrane. The death receptor-mediated (extrinsic) path is stimulated by
the interaction of myricitrin with Bax/Bad (Zhou et al. 2024). The ligand
myricitrin inhibits anti-apoptotic proteins such as Bcl-2, Bcl-xL, and Mcl-
1, while simultaneously activating pro-apoptotic proteins including Bax,
Bad, Caspase-9, Caspase-3, and PARP, ultimately leading to the induction
of apoptosis. Collectively, these targets represent critical nodes in cancer
development and are commonly exploited in the design of targeted
anticancer therapies (Figure 1).

4. Conclusion

The present in-silico investigation provides compelling evidence for the
therapeutic potential of myricitrin as an anticancer agent targeting breast
cancer. The comprehensive molecular docking analysis revealed that
myricitrin establishes favorable hydrogen bond interactions with critical
apoptotic regulators including Caspase-8, NF-kB/p65, CDK4, CDK6, Bcl-
2, and Bak, indicating its capacity to modulate key cellular pathways
involved in cancer progression and cell death mechanisms. The
pharmacokinetic profiling demonstrates that myricitrin satisfies Lipinski's
Rule of Five parameters, confirming its drug-likeness potential for oral
bioavailability. Furthermore, the favorable ADMET (Absorption,
Distribution, Metabolism, Excretion, and Toxicity) characteristics
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support its suitability as a therapeutic candidate with minimal toxicity
concerns and optimal pharmacokinetic properties. Notably, myricitrin
exhibited exceptionally strong binding affinities toward pivotal molecular
targets, with catalase, CDK4, and NF-«xB/p65 showing impressive docking
scores of 8.6, -8.3, and -7.8 kcal/mol, respectively. These robust binding
interactions suggest significant inhibitory potential against oxidative
stress enzymes, cell cycle regulatory proteins, and inflammatory
transcription factors, all critical components in cancer pathogenesis. The
dual modulatory capacity of myricitrin toward both pro-apoptotic and
anti-apoptotic proteins underscores its potential to restore apoptotic
balance in malignant cells, a fundamental mechanism for effective cancer
therapy. The compound's ability to simultaneously target multiple
pathways including apoptosis regulation, cell cycle control, antioxidant
defense, and inflammatory signaling positions it as a multi-target
therapeutic agent with enhanced efficacy potential. These findings
collectively establish myricitrin as a highly promising phytochemical
candidate warranting extensive further investigation through rigorous in
vitro cell culture studies and in vivo animal models to validate its
anticancer efficacy against breast cancer and elucidate its precise
mechanisms of action in biological systems.
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