Molecular docking analysis of Naringenin from the leaves of Psidium guajava as a promising agent for breast cancer therapy
More details
Hide details
1
DBT-BIF Centre, Holy Cross College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
2
PG & Research Department of Biotechnology& Bioinformatics, Holy Cross College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
3
PG & Research Department of Zoology, Holy Cross College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
Submission date: 2025-07-08
Final revision date: 2025-07-28
Acceptance date: 2025-08-03
Online publication date: 2025-09-07
Publication date: 2025-09-07
Corresponding author
Manikkam Rajalakshmi
PG & Research Department of Zoology, Holy Cross College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
Journal of Medico Informatics 2025;1(1):35-43
HIGHLIGHTS
- Naringenin from guava leaves exhibits broad pharmacological properties of anticancer effects.
- Its specific anticancer potential against breast cancer targets remains underexplored.
- Naringenin showed good oral bioavailability and low toxicity through Lipinski and ADMET evaluations.
- Molecular docking revealed strong binding affinities with catalase, CDK4, and CDK6 proteins.
- Scoring and Interactions analysis suggest modulation of apoptosis & oxidative stress pathways in breast cancer.
KEYWORDS
TOPICS
ABSTRACT
Naringenin, a naturally occurring flavonoid isolated from Psidium guajava leaves, has been reported to exhibit multiple pharmacological properties, including antimicrobial, anti-inflammatory, antidiabetic, hepatoprotective, neuroprotective, cardioprotective, nephroprotective, anticancer, and antioxidant effects. Despite its wide pharmacological spectrum, its specific anticancer potential and molecular interactions against breast cancer targets remain underexplored. This study aimed to evaluate the drug-likeness, ADMET properties, and molecular docking profile of naringenin against critical breast cancer-associated proteins, including those involved in cell cycle regulation, apoptosis, oxidative stress, and NF-κB signaling. Naringenin was assessed for drug-likeness using Lipinski’s Rule of Five and pharmacokinetic behavior through ADMET prediction tools. Molecular docking simulations were performed to analyze the binding affinities and interaction profiles between naringenin and selected target proteins such as CDK4, CDK6, catalase, Bcl‑2, Bcl‑xL, superoxide dismutase (SOD), glutathione peroxidase, and peroxiredoxin. Naringenin complied with the Lipinski rule of five and demonstrated favorable ADMET characteristics, suggesting good oral bioavailability and low toxicity risk. Molecular docking revealed that naringenin exhibited strong binding affinities, with the highest scores recorded against catalase (–10.3 kcal/mol), CDK4 (–8.3 kcal/mol), and CDK6 (–8.0 kcal/mol). Significant hydrogen bond interactions were observed with CDK4, Bcl‑2, Bcl‑xL, SOD, glutathione peroxidase, and peroxiredoxin, indicating its potential to modulate apoptotic and oxidative stress pathways relevant in breast cancer progression.
ACKNOWLEDGEMENTS
We thank the Department of Science and Technology, Government of India, for providing support through the Fund for Improvement of S&T Infrastructure in Universities and Higher Educational Institutions (FIST) program (Grant No. SR/FIST/College-/2020/943).
FUNDING
This research was funded by Department of Science and Technology (DST) Fund for Improvement of S&T Infrastructure in Universities and Higher Educational Institutions (FIST) program (Grant No. SR/FIST/College-2020/943).
CONFLICT OF INTEREST
The authors declare that they have no known financial, personal, academic, or other relationships that could inappropriately influence, or be perceived to influence, the work reported in this manuscript. All authors confirm that there are no competing interests to declare.
PEER REVIEW INFORMATION
Article has been screened for originality
REFERENCES (40)
1.
Ahmad, I., A. E. Kuznetsov, A. S. Pirzada, K. F. Alsharif, M. Daglia, and H. Khan. 2023. "Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT-based approaches." Front Chem 11:1145974. doi: 10.3389/fchem.2023.1145974. PMID: 37123881.
2.
Alamri, M. A., A. Altharawi, A. B. Alabbas, M. A. Alossaimi, and S. M. Alqahtani. 2020. "Structure-based virtual screening and molecular dynamics of phytochemicals derived from Saudi medicinal plants to identify potential COVID-19 therapeutics." Arab J Chem 13 (9):7224-7234. doi: 10.1016/j.arabjc.2020.08.004. PMID: 34909058.
3.
Antypenko, L., K. Shabelnyk, O. Antypenko, M. Arisawa, O. Kamyshnyi, V. Oksenych, and S. Kovalenko. 2025. "In Silico Identification and Characterization of Spiro[1,2,4]triazolo[1,5-c]quinazolines as Diacylglycerol Kinase alpha Modulators." Molecules 30 (11). doi: 10.3390/molecules30112324. PMID: 40509212.
4.
Anwar, S., J. Alanazi, N. Ahemad, S. Raza, T. A. Chohan, and H. Saleem. 2024. "Deciphering quinazoline derivatives' interactions with EGFR: a computational quest for advanced cancer therapy through 3D-QSAR, virtual screening, and MD simulations." Front Pharmacol 15:1399372. doi: 10.3389/fphar.2024.1399372. PMID: 39512829.
5.
Brown, J. S., S. R. Amend, R. H. Austin, R. A. Gatenby, E. U. Hammarlund, and K. J. Pienta. 2023. "Updating the Definition of Cancer." Mol Cancer Res 21 (11):1142-1147. doi: 10.1158/1541-7786.MCR-23-0411. PMID: 37409952.
6.
Carrington, E. M., Y. Zhan, J. L. Brady, J. G. Zhang, R. M. Sutherland, N. S. Anstee, R. L. Schenk, et al. 2017. "Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo." Cell Death Differ 24 (5):878-888. doi: 10.1038/cdd.2017.30. PMID: 28362427.
7.
Cord, D., M. C. Rimbu, and L. Popescu. 2025. "New prospects in oncotherapy: bioactive compounds from Taraxacum officinale." Med Pharm Rep 98 (3):290-299. doi: 10.15386/mpr-2875. PMID: 40786212.
8.
Demian, M. D., V. I. Amasiorah, T. O. Johnson, and L. N. Ebenyi. 2024. "Phytochemical identification and in silico elucidation of interactions of bioactive compounds from Citrullus lanatus with androgen receptor towards prostate cancer treatment." In Silico Pharmacol 12 (1):27. doi: 10.1007/s40203-024-00193-5. PMID: 38596366.
9.
Elsori, D., P. Pandey, S. Ramniwas, R. Kumar, S. Lakhanpal, S. O. Rab, S. Siddiqui, A. Singh, M. Saeed, and F. Khan. 2024. "Naringenin as potent anticancer phytocompound in breast carcinoma: from mechanistic approach to nanoformulations based therapeutics." Front Pharmacol 15:1406619. doi: 10.3389/fphar.2024.1406619. PMID: 38957397.
10.
Gao, J., L. Yuan, H. Jiang, G. Li, Y. Zhang, R. Zhou, W. Xian, Y. Zou, Q. Du, and X. Zhou. 2024. "Naringenin modulates oxidative stress and lipid metabolism: Insights from network pharmacology, mendelian randomization, and molecular docking." Front Pharmacol 15:1448308. doi: 10.3389/fphar.2024.1448308. PMID: 39474612.
11.
Ghayoor, A., and H. G. Kohan. 2024. "Revolutionizing pharmacokinetics: the dawn of AI-powered analysis." J Pharm Pharm Sci 27:12671. doi: 10.3389/jpps.2024.12671. PMID: 38433887.
12.
Goodger, N. M., J. Gannon, T. Hunt, and P. R. Morgan. 1997. "Cell cycle regulatory proteins--an overview with relevance to oral cancer." Oral Oncol 33 (2):61-73. doi: 10.1016/s0964-1955(96)00071-1. PMID: 9231162.
13.
Jain, A. N. 2009. "Effects of protein conformation in docking: improved pose prediction through protein pocket adaptation." J Comput Aided Mol Des 23 (6):355-374. doi: 10.1007/s10822-009-9266-3. PMID: 19340588.
14.
Jiang, H., M. Zhang, X. Lin, X. Zheng, H. Qi, J. Chen, X. Zeng, W. Bai, and G. Xiao. 2023. "Biological Activities and Solubilization Methodologies of Naringin." Foods 12 (12). doi: 10.3390/foods12122327. PMID: 37372538.
15.
Jung, W., S. Goo, T. Hwang, H. Lee, Y. K. Kim, J. W. Chae, H. Y. Yun, and S. Jung. 2024. "Absorption Distribution Metabolism Excretion and Toxicity Property Prediction Utilizing a Pre-Trained Natural Language Processing Model and Its Applications in Early-Stage Drug Development." Pharmaceuticals (Basel) 17 (3). doi: 10.3390/ph17030382. PMID: 38543168.
16.
Karami, T. K., S. Hailu, S. Feng, R. Graham, and H. J. Gukasyan. 2022. "Eyes on Lipinski's Rule of Five: A New "Rule of Thumb" for Physicochemical Design Space of Ophthalmic Drugs." J Ocul Pharmacol Ther 38 (1):43-55. doi: 10.1089/jop.2021.0069. PMID: 34905402.
17.
Kim, S., P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, et al. 2016. "PubChem Substance and Compound databases." Nucleic Acids Res 44 (D1):D1202-1213. doi: 10.1093/nar/gkv951. PMID: 26400175.
18.
Kumar, M., M. Tomar, R. Amarowicz, V. Saurabh, M. S. Nair, C. Maheshwari, M. Sasi, et al. 2021. "Guava (Psidium guajava L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities." Foods 10 (4). doi: 10.3390/foods10040752. PMID: 33916183.
19.
Li, X., Q. Jiang, and X. Yang. 2022. "Discovery of Inhibitors for Mycobacterium Tuberculosis Peptide Deformylase Based on Virtual Screening in Silico." Mol Inform 41 (3):e2100002. doi: 10.1002/minf.202100002. PMID: 34708566.
20.
Lim, W., S. Park, F. W. Bazer, and G. Song. 2017. "Naringenin-Induced Apoptotic Cell Death in Prostate Cancer Cells Is Mediated via the PI3K/AKT and MAPK Signaling Pathways." J Cell Biochem 118 (5):1118-1131. doi: 10.1002/jcb.25729. PMID: 27606834.
21.
Liou, G. Y., and P. Storz. 2010. "Reactive oxygen species in cancer." Free Radic Res 44 (5):479-496. doi: 10.3109/10715761003667554. PMID: 20370557.
22.
Liu, T., L. Zhang, D. Joo, and S. C. Sun. 2017. "NF-kappaB signaling in inflammation." Signal Transduct Target Ther 2:17023-. doi: 10.1038/sigtrans.2017.23. PMID: 29158945.
23.
Lok, B., D. Babu, Y. Tabana, S. S. Dahham, M. A. A. Adam, K. Barakat, and D. Sandai. 2023. "The Anticancer Potential of Psidium guajava (Guava) Extracts." Life (Basel) 13 (2). doi: 10.3390/life13020346. PMID: 36836712.
24.
Lopez, G., I. Ezkurdia, and M. L. Tress. 2009. "Assessment of ligand binding residue predictions in CASP8." Proteins 77 Suppl 9 (Suppl 9):138-146. doi: 10.1002/prot.22557. PMID: 19714771.
25.
Meng, X. Y., H. X. Zhang, M. Mezei, and M. Cui. 2011. "Molecular docking: a powerful approach for structure-based drug discovery." Curr Comput Aided Drug Des 7 (2):146-157. doi: 10.2174/157340911795677602. PMID: 21534921.
26.
Moloney, J. N., and T. G. Cotter. 2018. "ROS signalling in the biology of cancer." Semin Cell Dev Biol 80:50-64. doi: 10.1016/j.semcdb.2017.05.023. PMID: 28587975.
27.
Mukherjee, S., T. E. Balius, and R. C. Rizzo. 2010. "Docking validation resources: protein family and ligand flexibility experiments." J Chem Inf Model 50 (11):1986-2000. doi: 10.1021/ci1001982. PMID: 21033739.
28.
Pellarin, I., A. Dall'Acqua, A. Favero, I. Segatto, V. Rossi, N. Crestan, J. Karimbayli, B. Belletti, and G. Baldassarre. 2025. "Cyclin-dependent protein kinases and cell cycle regulation in biology and disease." Signal Transduct Target Ther 10 (1):11. doi: 10.1038/s41392-024-02080-z. PMID: 39800748.
29.
Pinzi, L., and G. Rastelli. 2019. "Molecular Docking: Shifting Paradigms in Drug Discovery." Int J Mol Sci 20 (18). doi: 10.3390/ijms20184331. PMID: 31487867.
30.
Pires, D. E., T. L. Blundell, and D. B. Ascher. 2015. "pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures." J Med Chem 58 (9):4066-4072. doi: 10.1021/acs.jmedchem.5b00104. PMID: 25860834.
31.
Ramirez, D., and J. Caballero. 2018. "Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data?" Molecules 23 (5). doi: 10.3390/molecules23051038. PMID: 29710787.
32.
Saleem, M., M. I. Qadir, N. Perveen, B. Ahmad, U. Saleem, T. Irshad, and B. Ahmad. 2013. "Inhibitors of apoptotic proteins: new targets for anticancer therapy." Chem Biol Drug Des 82 (3):243-251. doi: 10.1111/cbdd.12176. PMID: 23790005.
33.
Salehi, B., P. V. T. Fokou, M. Sharifi-Rad, P. Zucca, R. Pezzani, N. Martins, and J. Sharifi-Rad. 2019. "The Therapeutic Potential of Naringenin: A Review of Clinical Trials." Pharmaceuticals (Basel) 12 (1). doi: 10.3390/ph12010011. PMID: 30634637.
34.
Schirripa, A., V. Sexl, and K. Kollmann. 2022. "Cyclin-dependent kinase inhibitors in malignant hematopoiesis." Front Oncol 12:916682. doi: 10.3389/fonc.2022.916682. PMID: 36033505.
35.
Venkataraman, M., G. C. Rao, J. K. Madavareddi, and S. R. Maddi. 2025. "Leveraging machine learning models in evaluating ADMET properties for drug discovery and development." ADMET DMPK 13 (3):2772. doi: 10.5599/admet.2772. PMID: 40585410.
36.
Vinod, S. M., S. Murugan Sreedevi, A. Krishnan, K. Ravichandran, P. Karthikeyan, B. Kotteswaran, and K. Rajendran. 2023. "Complexity of the Role of Various Site-Specific and Selective Sudlow Binding Site Drugs in the Energetics and Stability of the Acridinedione Dye-Bovine Serum Albumin Complex: A Molecular Docking Approach." ACS Omega 8 (6):5634-5654. doi: 10.1021/acsomega.2c07111. PMID: 36816669.
37.
Wong, F., A. Krishnan, E. J. Zheng, H. Stark, A. L. Manson, A. M. Earl, T. Jaakkola, and J. J. Collins. 2022. "Benchmarking AlphaFold-enabled molecular docking predictions for antibiotic discovery." Mol Syst Biol 18 (9):e11081. doi: 10.15252/msb.202211081. PMID: 36065847.
38.
Xu, J., J. T. F. Wise, L. Wang, K. Schumann, Z. Zhang, and X. Shi. 2017. "Dual Roles of Oxidative Stress in Metal Carcinogenesis." J Environ Pathol Toxicol Oncol 36 (4):345-376. doi: 10.1615/JEnvironPatholToxicolOncol.2017025229. PMID: 29431065.
39.
Yu, H., L. Lin, Z. Zhang, H. Zhang, and H. Hu. 2020. "Targeting NF-kappaB pathway for the therapy of diseases: mechanism and clinical study." Signal Transduct Target Ther 5 (1):209. doi: 10.1038/s41392-020-00312-6. PMID: 32958760.
40.
Zafar, A., S. Khatoon, M. J. Khan, J. Abu, and A. Naeem. 2025. "Advancements and limitations in traditional anti-cancer therapies: a comprehensive review of surgery, chemotherapy, radiation therapy, and hormonal therapy." Discov Oncol 16 (1):607. doi: 10.1007/s12672-025-02198-8. PMID: 40272602.