In-silico Study: The role of myricitrin from the leaves of Syzygium cumini in breast cancer treatment through apoptosis pathway
More details
Hide details
1
DBT-BIF Centre, Holy Cross College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
2
PG & Research Department of Zoology, Holy Cross College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
3
PG & Research Department of Biotechnology& Bioinformatics, Holy Cross College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
Submission date: 2025-07-07
Final revision date: 2025-07-28
Acceptance date: 2025-08-03
Online publication date: 2025-09-07
Publication date: 2025-09-07
Corresponding author
Manikkam Rajalakshmi
PG & Research Department of Zoology, Holy Cross College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
Journal of Medico Informatics 2025;1(1):1-9
HIGHLIGHTS
- Myricitrin complies with Lipinski’s Rule of Five, indicating favorable oral bioavailability.
- Docking shows high binding affinity with key apoptotic and cell-cycle proteins.
- Myricitrin targets both pro-apoptotic and anti-apoptotic proteins.
- Myricitrin as a lead herbal candidate for treating breast cancer
KEYWORDS
TOPICS
ABSTRACT
Myricitrin, a naturally occurring flavonoid glycoside, exhibits a wide spectrum of pharmacological activities, including anti-bacterial, anti-viral, anti-allergic, antioxidant, anti-diabetic, anti-allodynic, anti-inflammatory, and anti-cancer effects. This study investigates the anticancer potential of myricitrin, isolated from the leaves of Syzygium cumini, against breast cancer-associated molecular targets using an in-silico approach. The primary objectives were to evaluate the compound's compliance with Lipinski's Rule of Five, assess its ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profile, and analyze protein–ligand interactions relevant to breast cancer progression and apoptosis regulation. Physicochemical evaluation revealed that myricitrin satisfies Lipinski's Rule of Five, indicating favorable drug-likeness properties for oral bioavailability. ADMET predictions further demonstrated favorable pharmacokinetic and safety profiles. Molecular docking studies revealed that myricitrin exhibited strong binding affinities toward key apoptotic and cell-cycle regulatory proteins, including Caspase 8, NF-κB/p65, CDK4, CDK6, Bcl-2, and Bak. Notably, hydrogen bond interactions and hydrophobic contacts contributed significantly to the stability of these complexes. The interactions with both pro-apoptotic (Caspase 8, Bak) and anti-apoptotic (Bcl-2) proteins suggest a potential dual modulatory mechanism in apoptosis regulation, making myricitrin a promising candidate for targeted breast cancer therapy. The findings provide compelling in-silico evidence for the anticancer potential of myricitrin, supporting its role as a therapeutic lead compound. Further in vitro and in vivo studies are warranted to validate these interactions and establish its clinical applicability. This study highlights myricitrin as a powerful herbal bioactive candidate with potential for the development of novel breast cancer therapeutics.
ACKNOWLEDGEMENTS
The authors thankfully acknowledge the Department of Science and Technology, Government of India, for providing support through the Fund for Improvement of S&T Infrastructure in Universities and Higher Educational Institutions (FIST) program (Grant No. SR/FIST/College-/2020/943).
FUNDING
Department of Science and Technology, Government of India, through the Fund “Improvement of S&T Infrastructure in Universities and Higher Educational Institutions (FIST) program (Grant No. SR/FIST/College-/2020/943)”.
CONFLICT OF INTEREST
The authors declare that they have no known financial, personal, academic, or other relationships that could inappropriately influence, or be perceived to influence, the work reported in this manuscript. All authors confirm that there are no competing interests to declare.
PEER REVIEW INFORMATION
Article has been screened for originality
REFERENCES (51)
1.
Abdulrahman, M. D., and H. A. Hama. 2023. "Anticancer of genus Syzygium: a systematic review." Explor Target Antitumor Ther 4 (2):273-293. doi: 10.37349/etat.2023.00134. PMID: 37205310.
2.
Abukhdeir, A. M., and B. H. Park. 2008. "P21 and p27: roles in carcinogenesis and drug resistance." Expert Rev Mol Med 10:e19. doi: 10.1017/S1462399408000744. PMID: 18590585.
3.
Agamah, F. E., G. K. Mazandu, R. Hassan, C. D. Bope, N. E. Thomford, A. Ghansah, and E. R. Chimusa. 2020. "Computational/in silico methods in drug target and lead prediction." Brief Bioinform 21 (5):1663-1675. doi: 10.1093/bib/bbz103. PMID: 31711157.
4.
Agraharam, G., A. Girigoswami, and K. Girigoswami. 2022. "Myricetin: a Multifunctional Flavonol in Biomedicine." Curr Pharmacol Rep 8 (1):48-61. doi: 10.1007/s40495-021-00269-2. PMID: 35036292.
5.
Agu, P. C., C. A. Afiukwa, O. U. Orji, E. M. Ezeh, I. H. Ofoke, C. O. Ogbu, E. I. Ugwuja, and P. M. Aja. 2023. "Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management." Sci Rep 13 (1):13398. doi: 10.1038/s41598-023-40160-2. PMID: 37592012.
6.
Agyapong, O., S. O. Asiedu, S. K. Kwofie, W. A. Miller, 3rd, C. S. Parry, R. A. Sowah, and M. D. Wilson. 2021. "Molecular modelling and de novo fragment-based design of potential inhibitors of beta-tubulin gene of Necator americanus from natural products." Inform Med Unlocked 26. doi: 10.1016/j.imu.2021.100734. PMID: 34912942.
7.
Ahmad, I., A. E. Kuznetsov, A. S. Pirzada, K. F. Alsharif, M. Daglia, and H. Khan. 2023. "Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT-based approaches." Front Chem 11:1145974. doi: 10.3389/fchem.2023.1145974. PMID: 37123881.
8.
Ahmed, M. B., S. U. Islam, A. A. A. Alghamdi, M. Kamran, H. Ahsan, and Y. S. Lee. 2022. "Phytochemicals as Chemo-Preventive Agents and Signaling Molecule Modulators: Current Role in Cancer Therapeutics and Inflammation." Int J Mol Sci 23 (24). doi: 10.3390/ijms232415765. PMID: 36555406.
9.
Almatroodi, S. A., and A. H. Rahmani. 2025. "Unlocking the Pharmacological Potential of Myricetin Against Various Pathogenesis." Int J Mol Sci 26 (9). doi: 10.3390/ijms26094188. PMID: 40362425.
10.
Asma, S. T., U. Acaroz, K. Imre, A. Morar, S. R. A. Shah, S. Z. Hussain, D. Arslan-Acaroz, et al. 2022. "Natural Products/Bioactive Compounds as a Source of Anticancer Drugs." Cancers (Basel) 14 (24). doi: 10.3390/cancers14246203. PMID: 36551687.
11.
Barh, D., and G. Viswanathan. 2008. "Syzygium cumini inhibits growth and induces apoptosis in cervical cancer cell lines: a primary study." Ecancermedicalscience 2:83. doi: 10.3332/ecancer.2008.83. PMID: 22275971.
12.
Behl, T., G. Rocchetti, S. Chadha, G. Zengin, S. Bungau, A. Kumar, V. Mehta, et al. 2021. "Phytochemicals from Plant Foods as Potential Source of Antiviral Agents: An Overview." Pharmaceuticals (Basel) 14 (4). doi: 10.3390/ph14040381. PMID: 33921724.
13.
Bhat, B. A., W. R. Mir, B. A. Sheikh, M. Alkanani, and M. A. Mir. 2022. "Metabolite fingerprinting of phytoconstituents from Fritillaria cirrhosa D. Don and molecular docking analysis of bioactive peonidin with microbial drug target proteins." Sci Rep 12 (1):7296. doi: 10.1038/s41598-022-10796-7. PMID: 35508512.
14.
Bitew, M., T. Desalegn, T. B. Demissie, A. Belayneh, M. Endale, and R. Eswaramoorthy. 2021. "Pharmacokinetics and drug-likeness of antidiabetic flavonoids: Molecular docking and DFT study." PLoS One 16 (12):e0260853. doi: 10.1371/journal.pone.0260853. PMID: 34890431.
15.
Chaudhary, A. K., N. Yadav, T. A. Bhat, J. O'Malley, S. Kumar, and D. Chandra. 2016. "A potential role of X-linked inhibitor of apoptosis protein in mitochondrial membrane permeabilization and its implication in cancer therapy." Drug Discov Today 21 (1):38-47. doi: 10.1016/j.drudis.2015.07.014. PMID: 26232549.
16.
Choudhari, A. S., P. C. Mandave, M. Deshpande, P. Ranjekar, and O. Prakash. 2019. "Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice." Front Pharmacol 10:1614. doi: 10.3389/fphar.2019.01614. PMID: 32116665.
17.
Collaborative Group on Hormonal Factors in Breast, Cancer. 2012. "Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies." Lancet Oncol 13 (11):1141-1151. doi: 10.1016/S1470-2045(12)70425-4. PMID: 23084519.
18.
Deka, K., and Y. Li. 2023. "Transcriptional Regulation during Aberrant Activation of NF-kappaB Signalling in Cancer." Cells 12 (5). doi: 10.3390/cells12050788. PMID: 36899924.
19.
Du, L., C. Geng, Q. Zeng, T. Huang, J. Tang, Y. Chu, and K. Zhao. 2023. "Dockey: a modern integrated tool for large-scale molecular docking and virtual screening." Brief Bioinform 24 (2). doi: 10.1093/bib/bbad047. PMID: 36764832.
20.
Eberhardt, J., D. Santos-Martins, A. F. Tillack, and S. Forli. 2021. "AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings." J Chem Inf Model 61 (8):3891-3898. doi: 10.1021/acs.jcim.1c00203. PMID: 34278794.
21.
Elmore, S. 2007. "Apoptosis: a review of programmed cell death." Toxicol Pathol 35 (4):495-516. doi: 10.1080/01926230701320337. PMID: 17562483.
22.
Feitelson, M. A., A. Arzumanyan, R. J. Kulathinal, S. W. Blain, R. F. Holcombe, J. Mahajna, M. Marino, et al. 2015. "Sustained proliferation in cancer: Mechanisms and novel therapeutic targets." Semin Cancer Biol 35 Suppl (Suppl):S25-S54. doi: 10.1016/j.semcancer.2015.02.006. PMID: 25892662.
23.
Forli, S., R. Huey, M. E. Pique, M. F. Sanner, D. S. Goodsell, and A. J. Olson. 2016. "Computational protein-ligand docking and virtual drug screening with the AutoDock suite." Nat Protoc 11 (5):905-919. doi: 10.1038/nprot.2016.051. PMID: 27077332.
24.
Franklin, D. S., V. L. Godfrey, H. Lee, G. I. Kovalev, R. Schoonhoven, S. Chen-Kiang, L. Su, and Y. Xiong. 1998. "CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis." Genes Dev 12 (18):2899-2911. doi: 10.1101/gad.12.18.2899. PMID: 9744866.
25.
Gao, M., and J. Skolnick. 2012. "The distribution of ligand-binding pockets around protein-protein interfaces suggests a general mechanism for pocket formation." Proc Natl Acad Sci U S A 109 (10):3784-3789. doi: 10.1073/pnas.1117768109. PMID: 22355140.
26.
Guo, Z., B. Li, L. T. Cheng, S. Zhou, J. A. McCammon, and J. Che. 2015. "Identification of protein-ligand binding sites by the level-set variational implicit-solvent approach." J Chem Theory Comput 11 (2):753-765. doi: 10.1021/ct500867u. PMID: 25941465.
27.
Han, S. H., J. H. Lee, J. S. Woo, G. H. Jung, S. H. Jung, E. J. Han, Y. S. Park, et al. 2022. "Myricetin induces apoptosis through the MAPK pathway and regulates JNK‑mediated autophagy in SK‑BR‑3 cells." Int J Mol Med 49 (4). doi: 10.3892/ijmm.2022.5110. PMID: 35234274.
28.
Hwang, I. W., and S. K. Chung. 2018. "Isolation and Identification of Myricitrin, an Antioxidant Flavonoid, from Daebong Persimmon Peel." Prev Nutr Food Sci 23 (4):341-346. doi: 10.3746/pnf.2018.23.4.341. PMID: 30675464.
29.
Iqbal, D., M. Alsaweed, Q. M. S. Jamal, M. R. Asad, S. M. D. Rizvi, M. R. Rizvi, H. M. Albadrani, M. Hamed, S. Jahan, and H. Alyenbaawi. 2023. "Pharmacophore-Based Screening, Molecular Docking, and Dynamic Simulation of Fungal Metabolites as Inhibitors of Multi-Targets in Neurodegenerative Disorders." Biomolecules 13 (11). doi: 10.3390/biom13111613. PMID: 38002295.
30.
Ivanova, L., and M. Karelson. 2022. "The Impact of Software Used and the Type of Target Protein on Molecular Docking Accuracy." Molecules 27 (24). doi: 10.3390/molecules27249041. PMID: 36558174.
31.
Jan, R., and G. E. Chaudhry. 2019. "Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics." Adv Pharm Bull 9 (2):205-218. doi: 10.15171/apb.2019.024. PMID: 31380246.
32.
Kanan, D., T. Kanan, B. Dogan, M. D. Orhan, T. Avsar, and S. Durdagi. 2021. "An Integrated in silico Approach and in vitro Study for the Discovery of Small-Molecule USP7 Inhibitors as Potential Cancer Therapies." ChemMedChem 16 (3):555-567. doi: 10.1002/cmdc.202000675. PMID: 33063944.
33.
Kumar, S., N. Swamy, H. S. Tuli, S. Rani, A. Garg, D. Mishra, H. S. Abdulabbas, and S. S. Sandhu. 2023. "Myricetin: a potential plant-derived anticancer bioactive compound-an updated overview." Naunyn Schmiedebergs Arch Pharmacol 396 (10):2179-2196. doi: 10.1007/s00210-023-02479-5. PMID: 37083713.
34.
Lukasiewicz, S., M. Czeczelewski, A. Forma, J. Baj, R. Sitarz, and A. Stanislawek. 2021. "Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review." Cancers (Basel) 13 (17). doi: 10.3390/cancers13174287. PMID: 34503097.
35.
Mazurakova, A., L. Koklesova, M. Samec, E. Kudela, K. Kajo, V. Skuciova, S. H. Csizmar, et al. 2022. "Anti-breast cancer effects of phytochemicals: primary, secondary, and tertiary care." EPMA J 13 (2):315-334. doi: 10.1007/s13167-022-00277-2. PMID: 35437454.
36.
Mukherjee, S., T. E. Balius, and R. C. Rizzo. 2010. "Docking validation resources: protein family and ligand flexibility experiments." J Chem Inf Model 50 (11):1986-2000. doi: 10.1021/ci1001982. PMID: 21033739.
37.
Pires, D. E., T. L. Blundell, and D. B. Ascher. 2015. "pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures." J Med Chem 58 (9):4066-4072. doi: 10.1021/acs.jmedchem.5b00104. PMID: 25860834.
38.
Ramirez, D., and J. Caballero. 2018. "Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data?" Molecules 23 (5). doi: 10.3390/molecules23051038. PMID: 29710787.
39.
Semwal, D. K., R. B. Semwal, S. Combrinck, and A. Viljoen. 2016. "Myricetin: A Dietary Molecule with Diverse Biological Activities." Nutrients 8 (2):90. doi: 10.3390/nu8020090. PMID: 26891321.
40.
Situmorang, P. C., S. Ilyas, S. E. Nugraha, R. A. Syahputra, and N. M. A. Nik Abd Rahman. 2024. "Prospects of compounds of herbal plants as anticancer agents: a comprehensive review from molecular pathways." Front Pharmacol 15:1387866. doi: 10.3389/fphar.2024.1387866. PMID: 39104398.
41.
Sofi, F. A., and N. Tabassum. 2023. "Natural product inspired leads in the discovery of anticancer agents: an update." J Biomol Struct Dyn 41 (17):8605-8628. doi: 10.1080/07391102.2022.2134212. PMID: 36255181.
42.
Sun, S. C. 2011. "Non-canonical NF-kappaB signaling pathway." Cell Res 21 (1):71-85. doi: 10.1038/cr.2010.177. PMID: 21173796.
43.
Sung, H., J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray. 2021. "Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries." CA Cancer J Clin 71 (3):209-249. doi: 10.3322/caac.21660. PMID: 33538338.
44.
Trott, O., and A. J. Olson. 2010. "AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading." J Comput Chem 31 (2):455-461. doi: 10.1002/jcc.21334. PMID: 19499576.
45.
Velankar, S., S. K. Burley, G. Kurisu, J. C. Hoch, and J. L. Markley. 2021. "The Protein Data Bank Archive." Methods Mol Biol 2305:3-21. doi: 10.1007/978-1-0716-1406-8_1. PMID: 33950382.
46.
Wang, Y., J. Xiao, T. O. Suzek, J. Zhang, J. Wang, and S. H. Bryant. 2009. "PubChem: a public information system for analyzing bioactivities of small molecules." Nucleic Acids Res 37 (Web Server issue):W623-633. doi: 10.1093/nar/gkp456. PMID: 19498078.
47.
Wani, A. K., N. Akhtar, T. U. G. Mir, R. Singh, P. K. Jha, S. K. Mallik, S. Sinha, et al. 2023. "Targeting Apoptotic Pathway of Cancer Cells with Phytochemicals and Plant-Based Nanomaterials." Biomolecules 13 (2). doi: 10.3390/biom13020194. PMID: 36830564.
48.
Wei, Y., Z. Jiao, T. Sun, Z. Lai, and X. Wang. 2023. "Molecular Mechanisms Behind Vascular Mimicry as the Target for Improved Breast Cancer Management." Int J Womens Health 15:1027-1038. doi: 10.2147/IJWH.S406327. PMID: 37465721.
49.
Wu, F., Y. Zhou, L. Li, X. Shen, G. Chen, X. Wang, X. Liang, M. Tan, and Z. Huang. 2020. "Computational Approaches in Preclinical Studies on Drug Discovery and Development." Front Chem 8:726. doi: 10.3389/fchem.2020.00726. PMID: 33062633.
50.
Yang, C., E. A. Chen, and Y. Zhang. 2022. "Protein-Ligand Docking in the Machine-Learning Era." Molecules 27 (14). doi: 10.3390/molecules27144568. PMID: 35889440.
51.
Zhou, Z., T. Arroum, X. Luo, R. Kang, Y. J. Lee, D. Tang, M. Huttemann, and X. Song. 2024. "Diverse functions of cytochrome c in cell death and disease." Cell Death Differ 31 (4):387-404. doi: 10.1038/s41418-024-01284-8. PMID: 38521844.